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ABSTRACT

'-A three-dimensional version of the Beam-Warming scheme for solving the

compressible Navier-Stokes equations was implemented on the Cray-i computer.

The scheme is implicit and second-order accurate. The code is totally vec-

torized, allows for complicated geometries and includes a thin layer turbu-

lence model. Timings and comparisons are given. A preliminary discussion of

the full viscous model is included.
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I. INTRODUCTION

In recent years substantial progress has been made in the area of numeri-

cal simulation of fluid flows. However, one major limitation has been the size

and speed of the available computers. Now the new generations of computers, in-

cluding the ILLIAC IV, the Cray-1, and the CYBER 205, use vector architectures

and thus offer new possibilities in the area of fluid flow simulation.

The major purpose of this project was to implement the Beam-Warming scheme

for solving the Navier-Stokes equations [1] on the Cray-1. More precisely, the

plan was to combine the best parts of the codes written by Steger and Pulliam

[2] for the NASA-Ames CDC 7600 and by Lomax and Pulliam [3] for the NASA-Ames

ILLIAC IV, so as to take maximum advantage of the Cray-1. Our task was compli-

cated by the fact that the major loops in the two codes were in opposite orders.

However, we were able to capture all of the important vector operations of the

ILLIAC code and accomplish our goal.

A secondary goal of the project was to include the full viscous effect in

the above described code. The implementation of this goal has not been completed.

2. EQUATIONS IN NONDIMENSIONAL FORM

We are interested in the numerical simulation of unsteady, three-dimensional

flows of a compressible, viscous fluid in an arbitrary geometry. We wish to use

a grid generating scheme so we assume that the geometry of the physical problem

given in x-y-z space has been mapped onto a rectangular parallelpiped in the C-

n-4 space and that the metrics Ex, Ey, Ez, nx, ny, nz, 4x, Cy, Fz and the Jaco-

bian J of the mapping are provided. (For work on grid generating schemes see

[4], [5] or [6).) Hence we must solve the following system of equations.
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and pressure (p - (y-1) [e - .5p(u 2+ v 2+ W2 )J), respectively; p, X, K, Pr,

Re are the dynamic viscosity, kinematic viscosity, coefficient of thermal

conductivity, Prandtl number, and Reynolds number; -L.( - ( L

-) : ry (& ny C; n.C ) and
EF,,and G are E. F. and G evaluated at the free stream values of g

3. THIN LAYER APPROXIMATION,

For high Reynolds number flows with the assumptions that the r-variable. Is
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normal to the mapped rigid boundary and that we are only interested in a thin

layer of flow along the rigid surface (or equivalently that the viscous for-

ces away from the surface are negligible), we can eliminate the & and C deriv-

ative terms in the viscous terms (E , F and Gv). We then arrive at the fol-

lowing equation.

(2) _- + A ( - EA + ( -F )--G

0 a - Fe 7R

where
0

t(n+n+v )+(-)(n1 xu fl-n rnzw )n
Ij (nxFy24Z)V + (1 (zV+

(2 +n n j2+2+2 2(IxY)[s5 (u2 +v +W2) +icPr' (Y-I)" (a )n +(Q) (nxU+nyV+nzW)(rxUnnyV.+nzw)

Equation (2) is solved by the Beam-Warming scheme [1] or more specifically

the Steger-Pulliam implementation of the Beam-Warming scheme [2). The technique

uses trapezoidal time differencing, expansion of the nonlinear terms about the

nth time step, and approximately factoring the resulting equation. We then ob-

tain the following finite difference equation

A n At n At n

(3) (1I+--A cJ VA) (I +-1--4B - cV tiJ -M ) (+-~ It
2 nn 2Re Z C I

VA n n + I n C J-1 UV a2 + (V A)2 +V AJ)A!= AC(6E + 6F 6 -- S)-LJ_ (~~ VA,

~ 3 ~ - n- r~- Re n2-

(VCA) 2]jqn

where At is the time increment; 6V' 6in6s are central differences with respect

to the appropriate space variable, cI and cE are amounts of dissipation added

(second order and fourth order, respectively); all functions with a superscript8E
n+l n and -

denote that function evaluated at time mAt; As =  
-_ ; A B-

C " and M- -. Also the turbulence model described in (71 can be inclu-
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ded in Equation (3) by varying the coeficients associated with S. For an ex-

cellent paper describing the scheme see [71.

The scheme coded is to solve Equation (3). This process consists of the

following four steps: (1) the explicit computation of the right-hand side; (2)

- (4) the solution of three block tridiagonal systems of equations.

4. CRAY-i CODE FOR THIN LAYER APPROXIMATION

The 7600 code to solve Equation (3) is relatively straightforward (or at

least as straightforward as such a large code can be). The right-hand side is

evaluated and then the three block tridiagonals are solved. An important factor

is that the equation to be solved is indexed in the direction associated with that

particular factor. For example, when solving the equation

(4) (1 n B - c VnAJ - 2Pte)u - -Right-hand side,'

it is logical and saves storage space to fix the J and L indices (indices associ-

ated with the E and 4 directions, respectively) and solve the resulting system of

equations indexed by K (index in the n direction). This allows the 7600 code to

solve a 30-row (because of size limitations 30 is the largest number of mesh

points used in any direction) block (5 x 5 blocks) tridiagonal.

Unfortunately, although the above procedure is probably vectorizable, it

is nowhere near optimum for the Cray-1. The largest resulting vector would be

30 where multiples of 64 are the optimum vector sizes on the Cray-i (and bigger

vectors yet gain speed on the CYBER 205).

Because of the vector capabilities of the ILLIAC, the ILLIAC code is quite

different from the 7600 code. The ILLIAC code is written in CFD, [8], which is

similar to FORTRAN so parts were able to be used almost exactly as in the ILLIAC

code. However, due to peculiarities of the ILLIAC, much of the code is ILLIAC

dependent (disc manipulations, manipulation of scalars, scalar arithmetic, etc.).

Hence, we developed the Cray code by using the serial operation flow of the 7600
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while retaining all of the vector portions of the ILLIAC code that are performed

often. For another Cray-i implementation of the ILLIAC code and the subsequent

comparison, see [9].

Much of the logic in the ILLIAC code is due to the data structure and man-

ipulation. One problem is that the ILLIAC has only 130K words of memory so to

be able to work a very large problem it is necessary to use the disc extensively.

Also, two characteristics of the ILLIAC are that it will only handle vectors of

length 64 or less (and it is inefficient to use less) and it is very difficult

(nearly impossible) to transfer any information down the vector. Because of these

limitations the data structure used in the ILLIAC code is to partition the grid

into 8 x 8 x 8 blocks. A row of these blocks in a given direction is then called

a pencil in that direction. Because of the space limitation of the memory, the

scheme is to bring a pencil at a time into core. The sdlution scheme involves'

first sweeping through each of the C- pencils and with the data in the machine

where the n-c directions are the components of the vector (a t-pencil will con-

tain .JAX 8 x 8 n-C planes), calculate the necessary C differences in the right-

hand Etde of Equation (3). The next two steps involve doing the same thing with

the n md C pencils. These steps are necessary with the ILLIAC since the machine

will not allow arithmetic along a vector. This implementation is convenient since

it makes the right-hand side calculations vector operations. The next three steps

involve sweeping through the pencils in each of the directions again, at each step

solving the appropriate block tridiagonal matrix. For example, Equation (4) would

be solved while sweeping the n-pencils. Since the left-hand side of Equation (4)

involves only n differences, the vector contains an 8 x 8 piece of a &-C plane.

This makes solving Equation (4) a perfect vector operation. We might add that

for each of these sweeps the data must be in the machine in a different order (to

make the operations vector and to make the matrices block tridiagonals). Hence,

some of the sweeps also include the appropriate transposes to get the data in the
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right places. We should also add that by doing the right-hand side calculation

and solving the appropriate block tridiagonal matrix during the same sweep for

the t and n directions, it is necessary to sweep the data four times rather than

the six indicated above.

One convenient aspect about converting the ILLIAC code to the Cray was that

the above described data structure is also approximately the best to use on the

Cray. Initially it might seem that since the Cray vector operations have no

length restrictions (except that the speed is optimum when the vector length is

a multiple of 64), the best approach is to use pencils that include the entire

grid or at least bigger than 8 x 8 planes. This would be possible for problems

if a disk version of the Cray code was desired. However, the above scheme for

the full grid would require approximately 40 x (grid size) + 50 x (largest plane

size) words of storage so only relatively small problems would fit on the Cray.

Our Cray code is written so that it is contained entirely in core. In gen-

eral, the block tridiagonal solver will require 3 x (vector length) x 25 x (maxi-

mum pencil length - 2) words of storage. Allowing space for the full matrix is

advantageous because it allows use of canned block tridiagonal solvers such as

that described in [10]. We chose not to use this approach. Our block tridiagonal

solver generates the matrix during the forward sweep so if 8 x 8 pencils are used,

storage due to the matrix solver is minimal (64 x 25 x (pencil length) + 2)).

Thus we have used the same data structure for our Cray code as we used in

the ILLIAC code. The storage requirements for our code are approximately 15 x

(grid size) + 64 x 43 x (maximum pencil length) + 64 x 90 so at least moderately

large problems can be worked using the code.

Hence, the code proceeds to solve Equation (3) by sweeping the data to form

the right-hand side and again sweep the data to solve the matrix equations, by

the same four sweeps in the ILLIAC code.
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5. THIN LAYER CODE RESULTS

It is very difficult and somewhat meaningless to compare results of a code

such as this one on different machines. As mentioned earlier the ILLIAC code

used a large number of disk manipulations. The 7600 code used the slower large

core memory. So to compare times of the Cray code (which is all in core) might

not mean much. For lack of other fairer comparisons we will make some of the

above comparisons.

The Cray-i code runs at about 4.9 seconds per time step for a 32 x 32 x 24

grid. The above time includes the starting and ending overhead which we assume is

negligible. When the vector mode of the Cray is turned off, the code takes 16.7

seconds per time step for the same grid. Thus it is apparent that the code is

gaining efficiency from the vectorization.

It should be noted that in similar tests reported im [9] a Cray code for

the Beam-Warming scheme took 1.8 seconds per time step for a 20 x 30 x 21 grid

(and 1.3 seconds when using the matrix solver given in [101). Though this

seems like a big difference, it is not. It must be pointed out that a 32 x 32

x 24 grid is almost twice as big as a 20 x 30 x 21 grid. Also the code reported

in [9] calculated the metrics associated with the grid generation once and

stored them while our code recalculated them for each sweep. Another difference

between the two codes is that their code used blocks of size 11, instead of 8.

A consequence of their time saving techniques is that largest grid possible for

their code without going to disk is 30 x 30 x 38 whereas our code will allow for

a 32 x 32 x 48 grid without disk.

An analysis of the time used in the code showing that 40.5% of the time is

spent in setting up and solving the block tridiagonal matrices. Thus it might

be worth using a canned block tridiagonal solver if the storage requirements

make it possible. It might also be worthwhile to develop an efficient block

tridiagonal solver that does not require storage of the full tridiagonal matrix.
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The best estimates for the ILLIAC and 7600 runs of the analogous material

are 5.1 and 19.9 seconds per time step for a 20 x 30 x 21 grid. But again we

admit that these comparisons are not really relevant.

It should be noted that the thin layer code was only run with the free

stream problem and flow about a hemisphere cylinder. For a discussion of the

latter problem see (2]. Since our grids contained of different number of grid

points (and it is impossible to use a grid such as theirs in our code), an

exact comparison of the two codes was not possible. We did, however, plot the

values of p/p. versus x/R as do Steger and Pulliam in [21 (Figure 8) to at

least verify that the pressures on the body are the same. The plots were so

much the same that we did not reproduce them here.

6. FULL VISCOUS MODEL

As mentioned in the Introduction the inclusion of the full viscous effects

has not been completed. There are two reasons why we wish to include the full

viscous effects. The first is to see whether they are actually negligible. The

second reason is to make it easier to calculate flows in certain complex geom-

etries (for instance, flows in corners). To accomplish the latter goal we felt

that it was necessary to include the terms, linearize, factor and then include

a three-dimensional turbulence model. After some work this approach was aban-

doned as being too difficult for the present timeframe.

We next decided that it would be possible to answer the first question

sufficiently wellby including the remaining viscous (the terms not included in

the thin layer approximation) explicitly. We are presently in the process of

doing this.

If we return to Equations (1) and (2) it is not hard to see that the parts

of (1) that are omitted in (2) are
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_V - J-i V

where

T [T r

T2 as=~ u + u + x 

Tr2a =t + 2j( Yv + 1:u
I I

T12 3 a2 ' ( C U + yV + + +

1

I II ~'23 ' 32 ff (zV + V~ + yW + yW )

T33 + 2v(&zW + 1zw )

and

S= yKPr X + ;+ 1 - L + -L] e, + u v 'a&- a ya z' 9

Thus our present plan is to use our present code with the scheme altered so

as to solve Equation (3) with a term Vn added to the right hand side. If the ef-

fects of the full viscous terms are not negligible, then the next step will be to

include the terms in V implicitly.
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